
www.manaraa.com

The Ramifications of Sharing in Data Structures

Aquinas Hobor

National University of Singapore

hobor@comp.nus.edu.sg

Jules Villard

University College London

j.villard@cs.ucl.ac.uk

Abstract
Programs manipulating mutable data structures with intrinsic shar-
ing present a challenge for modular verification. Deep aliasing inside
data structures dramatically complicates reasoning in isolation over
parts of these objects because changes to one part of the structure
(say, the left child of a dag node) can affect other parts (the right
child or some of its descendants) that may point into it. The result
is that finding intuitive and compositional proofs of correctness is
usually a struggle. We propose a compositional proof system that
enables local reasoning in the presence of sharing.

While the AI “frame problem” elegantly captures the reasoning
required to verify programs without sharing, we contend that natural
reasoning about programs with sharing instead requires an answer
to a different and more challenging AI problem, the “ramification
problem”: reasoning about the indirect consequences of actions.
Accordingly, we present a RAMIFY proof rule that attacks the
ramification problem head-on and show how to reason with it.
Our framework is valid in any separation logic and permits sound
compositional and local reasoning in the context of both specified
and unspecified sharing. We verify the correctness of a number of
examples, including programs that manipulate dags, graphs, and
overlaid data structures in nontrivial ways.

Categories and Subject Descriptors F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: Logics of programs; D.2.4
[Software/Program Verification]: Correctness proofs, Formal meth-
ods

General Terms Languages, Theory, Verification.

Keywords Aliasing, Heap/Shape, Modularity, Separation logic.

1. Introduction
Data structures with intrinsic sharing, such as acyclic and unre-
stricted graphs as well as various kinds of overlaid data structures,
are pervasive in computing. An example of an overlaid data structure
can be found in the Linux deadline I/O scheduler, in which the set
of events forms both a singly linked list and a binary sorted tree,
depending on which links one follows. Programs manipulating data
structures with sharing are often short, but the reason that they are
correct can be subtle, and previous work has not come up with gen-
eral, intuitive and compositional principles for reasoning about such
programs. The key difficulty is that deep aliasing dramatically com-
plicates reasoning in isolation over parts of these objects: changes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’13 January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

to one part of the structure (say, the left child of a dag) can affect
other parts (the right child or its descendants) that may point into it.

We propose a compositional proof system for programs manip-
ulating shared data structures. Our framework directly addresses
the intrinsic sharing present in the data structures and achieves
compositionality via applications of the following ramify rule:

RAMIFY

tP u c tQu ramifypR,P,Q,R1q
tRu c tR1u

At first glance there seems to be no connection between the known
spec tP u c tQu and the desired spec tRu c tR1u. The connection is
given by the ramification, indicated by the ramifypR,P,Q,R1q
premise, which asserts (semantically, although this paper also
provides ways to reason syntactically about it) that the “global”
assertion R becomes R1 after a “local” transformation from P to Q.

The term “ramification” comes from artificial intelligence [Fin87,
Thi01] and refers to the problem of understanding the indirect
(global) consequences of (local) actions (e.g. relocating a bookcase
might reduce the ambient light by blocking the window). Ramifica-
tion is contrasted with the simpler “frame” problem, which centers
on maintaining knowledge after unrelated actions (e.g., relocating
the bookcase does not change the number of moons of Jupiter).

Program verification has had significant success handling
the frame problem, especially with the frame rule of separation
logic [Rey02]:

FRAME

tP u c tQu
tP › F u c tQ › F u

Here the separating conjunction › ensures that P and F cover
disjoint pieces of heap, allowing the frame rule to guarantee that
F is unchanged under the action of c. The frame rule buys us
compositionality in the presence of the heap: we can reason about
the effect a program has on the portions of heap it accesses, and
reuse that spec in any bigger heap. This has given rise to concise,
compositional proofs of programs, even in the presence of some
forms of sharing where one knows what is shared by whom.

Unfortunately, we usually cannot use the frame rule directly
when verifying programs that manipulate data structures with unre-
stricted sharing because such structures cannot easily be massaged
into the form P › F : for example, the left and right descendants of
a dag node are not usually disjoint. The reason to focus on ramifica-
tion rather than frame is that the former allows us to reuse specs for
c in far more diverse settings than the latter permits. Of course, with
great power comes great responsibility: having isolated the parts of
the proof that require careful examination of indirect effects on the
global structure, we are left with ramification obligations to prove.

As it turns out, ramifications are expressible as separation logic
entailments: ramifypR,P,Q,R1q def“ R $ P ›pQ ´́› R1q. These
entailments feature the “magic wand” connective of separation logic
(“for all states σ1 satisfying Q and disjoint from the current state σ2,
the combination of both states σ1 ‘ σ2 satisfies R1”), which is notor-

www.manaraa.com

iously hard to reason about in general given the universal quantifi-
cation over states. However, appearances of ´́› in ramifications are
restricted to a particular idiom that, together with ›, denotes an up-
date to the state. Guided by this intuition, we are able to reduce these
spatial entailments to more abstract reasoning about the nature of the
update on the structure’s mathematical representation (e.g., graphs
as sets of nodes and edges and transformations on said graphs). The
verification process thus divides into two parts: first, showing that
a concrete program correctly implements some transformation on
an abstract mathematical structure; and second, showing that those
mathematical transformations produce the desired specification.

This division gives us the freedom to describe data structures
with intrinsic sharing in the most natural way. We will present
examples that use the separating conjunction › of separation logic
to reason about genuine disjointness (e.g., between the parent of a
dag node and its children), the overlapping conjunction Y› to reason
about unspecified sharing (e.g., between the left and right children of
a dag node), and the classical conjunction to reason about complete
sharing (e.g., an overlaid data structure).

In contrast to previous work, we achieve compositional reason-
ing and embrace the sharing. Approaches based on separation logic
favored convoluted invariants that hacked the state into the disjoint
pieces required by the frame rule. Often the predicate definitions de-
pended heavily on the program at hand (e.g. the dag definition used
could depend on the order of traversal in the algorithm [BCO04]).
In other words, previous attempts to reason about shared data struc-
tures with separation logic have stood on their head to avoid the
sharing. Other approaches suffered from these problems at least as
much and often gave up compositionality altogether [Bor00].

Our key contributions are as follows:

• We present the RAMIFY rule which enables local reasoning
while accounting for global effects precisely when they are re-
quired. Ramification can reason about programs that manipulate
data structures with unrestricted sharing while enabling the small
specifications, compositionality, and expressiveness that have
led to separation logic’s success.

• Although the ramify rule leads to more natural Hoare proofs, the
entailment checks can be nontrivial. We have developed a “rami-
fication library” of lemmas that help simplify the ramification
conditions. Crucially, we also show how to prove ramifications
concerned with certain general graph and dag updates in a way
that enables a separation of concern between heap manipulations
and mathematical reasoning about graphs.

• We have applied the ramify rule to a variety of algorithms that
manipulate data structures with nontrivial sharing. Although
some of the examples are not long, all involve intricate reasoning
due to the heavy use of sharing. We think that a strength of our
approach is that the Hoare invariants at each program point are
natural and seem to follow our “programmer’s intuition” much
more closely than traditional proofs.

• We give a semantic account of ramification, and show that RAM-
IFY and FRAME are each derivable from the other, meaning that
our framework is applicable in any separation logic. Moreover,
we identify the precise constraints on the underlying model that
enable the overlapping conjunction Y›, and show that most sepa-
ration logics in the literature can therefore follow our recipe and
use it to reason about unspecified sharing.

The rest of the paper is organized as follows: we first recall some
important concepts from separation logic (§2). We then motivate
and present the ramify rule (§3), and show how to reason about it
(§4). Based on this, we provide proof sketches for three examples
that showcase different aspects of ramification: marking a dag (§5),
removing from an overlaid data structure (§6), and Cheney’s garbage

collector (§7). Finally, we show how ramification is applicable in
virtually any separation logic (§8), compare to related works, and
conclude.

2. Separation Logic and Trees
Recall the framework of separation logic [IO01, Rey02] while con-
sidering the following mark procedure, written in C, that recursively
marks binary trees, dags, or graphs:

1 struct node {int m; struct node *l,*r;};
2 void mark(struct node *x) {
3 if (!x || x->m) return;
4 struct node *l = x->l, *r = x->r;
5 x->m = 1; mark(l); mark(r); }

Separation logic allows straightforward inductive definitions of
predicates to describe tree-like data structures in the heap. The
following definition disregards the actual contents and location of
each node, but does make sure that the structure is acyclic (thanks to
the › between the root and the subtrees) and that no sharing occurs
between subtrees (thanks to the › between the children):

treepxq def“
px “ 0^ empq _ Dd, l, r. x ÞÑ d, l, r › treeplq › treeprq

The definition of tree uses the standard classical separation logic
operators. A heaplet h satisfies the points-to predicate x ÞÑ y when
h contains only the location x, whose value is y, and the separating
conjunction P ›Q asserts that P and Q hold on disjoint subheaps.
We use x ÞÑ d, l, r as a shorthand for px ` 0q ÞÑ d › px ` 1q ÞÑ
l › px` 2q ÞÑ r (simplifying the memory model so that e.g., each
datum occupies one unit of space).

It is well-known how to use separation logic to prove the mark
procedure memory safe for trees. Moreover, the separation logic
proof mirrors the programmer’s intuitions beautifully. The crux of
the verification is to handle the recursive calls via the frame rule,
e.g., at line 5, taking the spec of mark as a premise:

ttreeplqu mark(l) ttreeplqu
tt ÞÑ 1, l, r › treeplq › treeprqu
mark(l)
tt ÞÑ 1, l, r › treeplq › treeprqu

FRAME

(1)

This is a canonical example of how inductive predicates, the separat-
ing conjunction, and the frame rule fit together to produce concise
proofs. Unrolling the tree predicate yields ›-conjoined formulas, so
the proof system, via its frame rule, is able to perform surgery on
the symbolic state and work on each sub-state independently.

3. Ramifications for Sharing
We now turn to the case of data structures with sharing, and introduce
our RAMIFY rule. We begin by defining inductive predicates for
dags and graphs before presenting the proof sketch that we aspire to
for the mark procedure when applied to dags.

3.1 Dag and Graph Predicates
Our first task is to define a dag predicate. Since the separating
conjunction › prevents sharing, our first attempt updates tree to
utilize regular conjunction ^ between the children instead:

dag0pxq def“ px “ 0^empq_Dl, r. x ÞÑ l, r›pdag0plq^dag0prqq
Unfortunately, in classical separation logic, dag0pxq actually de-
scribes a linked list because the conjunction forces the two sub-dags
to occupy exactly the same space in memory (h (P ^Q if h (P
and h (Q). However, Reynolds points out that dag0 is correct in in-
tuitionistic separation logic, in which x ÞÑ y holds on any heap that
contains at least x, rather than only x [Rey02, §6]. Translated into
our classical setting this is equivalent to defining dags as follows:

dag1pxq def“ px “ 0^ empq _
Dl, r. x ÞÑ l, r › ppdag1plq › trueq ^ pdag1prq › trueqq

www.manaraa.com

If our first attempt was in some sense “too small”, then our second
is “too big”: dag1pxq holds on any heap that contains at least a
dag rooted at x. As usual in intuitionistic separation logic, it is
impossible to fully verify certain algorithms (e.g. showing that dag
disposal completely frees the structure) using dag1.

What we want is a way to get the overlapping features of the
intuitionistic conjunction without actually becoming intuitionistic.
We turn to another connective, scarcely studied in the published
literature, which we dub the overlapping conjunction and write Y›,
and which precisely characterizes the desired sharing:

h |ù P Y› Q def“ Dh1, h2, h3.
ph1 ‘ h2 ‘ h3 “ hq ^ ph1 ‘ h2 (P q ^ ph2 ‘ h3 (Qq

The ‘ is the combination operator on the underlying separation
algebra [COY07] (often some kind of disjoint union). Contrast the
definition of Y› with the standard definition of ›:

h |ù P ›Q def“ Dh1, h2. ph1 ‘ h2 “ hq ^ ph1 (P q ^ ph2 (Qq
Here are some properties of Y› for reference and to aid intuition.

Lemma 3.1
P Y› emp %$ P (2)

P ^Q $ P Y› Q (3)

P ›Q $ P Y› Q (4)

P Y› Q $ P › true (5)

P Y› Q %$ DR. pR ´́› P q › pR ´́› Qq ›R (6)

P Y› Q %$ QY› P (7)

P Y› pQY› Rq %$ pP Y› Qq Y› R (8)

covarpF1q ñ covarpF2q ñ covarpλP. F1pP q Y› F2pP qq (9)

Equations (2), (3), (4) and (5) are immediate from the definition of
Y›. We use quantification over predicates in (6). Commutativity (7) is
direct from (6) and the commutativity of ›. In contrast, associativity
(8) is trickier and requires cross split (see §8.3). Finally, Lem. (9)
enables Y› to be used in covariant1 recursive predicates, just like ›
and ^. Whenever we write recursive definitions using Y›, including
dag and graph below, we are implicitly using (9).

The key point toY› is that we can use it in exactly the same places
that feature the kinds of sharing that the intuitionistic ^ captures,
but it does not “over-approximate” the resulting structure. That is, it
allows us to define a classical dag (with a data field) as:

dagpxq def“ px “ 0^ empq _
Dd, l, r. x ÞÑ d, l, r › pdagplq Y› dagprqq (10)

The separating conjunction › between the root x and its children
prevents cycles in the data structure. Pleasingly, the definition for
graphs simply replaces this remaining › with another Y›:

graphpxq def“ px “ 0^ empq _
Dd, l, r. x ÞÑ d, l, r Y› graphplq Y› graphprq (11)

We will equip dag and graph with mathematical dags δ and
graphs γ to enable proofs of functional correctness, writing
dagpx, δq and graphpx, γq respectively; δ and γ need not be “tight”
and so can include vertices that are unreachable from x. Mathemat-
ical trees lack sharing and are hence directly definable as terms;
mathematical dags δ and graphs γ are more complicated and so we
defer the associated formal definitions until §4.2; one key notation
is δpxq “ pd, l, rq, which indicates that the mathematical node x is
associated with data d and successors l and r.

Unspecified Sharing Observe thatY› models unspecified sharing:
i.e., the dag predicate does not say which parts of a dag are shared.
In contrast, specified sharing requires the precise identification of
the shared part, e.g. on a dag identifying which nodes are shared
between the left and right children; often this is very difficult.

1 covarpF q def“ pP $ Qq ñ F pP q $ F pQq

1 void mark(struct node *x) { // tdagpx, δqu
2 struct node *l,*r;
3 if (x == 0 || x->m == 1) return;
4 l = x->l; r = x->r;
5 // tx ÞÑ 0, l, r › pdagpl, δq Y› dagpr, δqq ^ δpxq “ p0, l, rqu
6 x->m = 1;
7 // tx ÞÑ 1, l, r › pdagpl, δq Y› dagpr, δqq ^ δpxq “ p0, l, rqu
8 mark(l);

9 //�p23q

"
x ÞÑ 1, l, r › pdagpl,mpδ, lqq Y› dagpr,mpδ, lqqq ^
δpxq “ p0, l, rq

*
10 mark(r);

11 //�p24q

"
x ÞÑ 1, l, r › pdagpl, δ1q Y› dagpr, δ1qq ^
δpxq “ p0, l, rq ^ δ1 “ mpmpδ, lq, rq

*
12 } // tdagpx,mpδ, xqqu

Figure 1: Proof sketch for marking a binary dag. The steps that
induce ramifications are indicated with �i, where the associated
ramification entailment is equation number i.

On the other hand, sometimes specified sharing is exactly what
the doctor ordered. Although the overlapping conjunction is ex-
tremely useful, our framework is not based around it, and one of
our key contributions is that RAMIFY can handle both specified and
unspecified sharing. For an example of specified sharing, see §6,
which uses ^ instead of Y›; moreover, see §8.3 for how we can use
the explicit overlapping conjunction of Cherini and Blanco [CB09].

3.2 Ramifications of Manipulating Dags

Fig. 1 presents the annotated2 proof sketch of the functional
correctness of mark when applied to dags using the small spec
tdagpl, δqu mark(l) tdagpl,mpδ, lqqu. The function mpδ, xq,
whose formal definition is deferred until §5, indicates the mathemat-
ical dag derived from δ via marking starting from node x. Notice
that this specification immediately implies that if the initial dag is
unmarked then the final dag is completely marked.

As is the case for many recursive programs on graph-like data
structures, part of the state tracking the recursive exploration of the
graph resides in the call stack, which remembers which states have
been only partially processed. Our spec accounts for this complexity
while remaining local (i.e., it only describes the portion of memory
accessed by mark), enabling compositional reasoning. Moreover, we
enjoy straightforward invariants at each program point.

Although the invariants are natural, the proof in separation logic
is far from obvious. Things are straightforward enough until we
reach the first recursive call at line 8. For tree we applied the
frame rule in equation 1, which worked very well. While we can
easily frame away the x ÞÑ 1, l, r from the precondition (line 7),
disentangling the two dag predicates into dagpl, δq on the one hand
and a ›-disjoint frame on the other would necessitate describing the
shape of the right child once everything that is shared with the left
child has been removed, which is exactly what we wish to avoid. The
second recursive call, in line 10, presents exactly the same problem:
we wish to frame but cannot. These two recursive calls require a
new proof pattern that we call ramification.

3.3 The RAMIFY Rule
While the proof outline of Fig. 1 provides all the invariants needed
to prove mark on dags, FRAME cannot be applied directly to reason
about the effect of applying the mark spec on the left child because
the left and right child are not disjoint. To solve this issue, we
introduce the ramification rule, which allows the reasoning to

2 We often write e.g. δpxq “ . . . when what we really mean is x ó v
^ δpvq “ . . ., where xóv means that the variable x evaluates to the value
v in the current state, because mathematical graphs take values rather than
variables. We elide these kinds of details for the presentation.

www.manaraa.com

progress through commands that have indirect global effects:

RAMIFY

tP u c tQu R $ P › pQ ´́› R1q
tRu c tR1u

fvpQ ´́› R1q X
modif pcq “ H

RAMIFY isolates the complicated leap in reasoning at each recursive
call site so that the assertions at each program point remain natural,
such as in Fig. 1 (e.g., the assertions are free from ´́›). No free
variables of Q ´́› R1 may be modified by c. As usual, magic wand
(separating implication) is the adjunct3 of ›:

h (P ´́› Q def“ @h1. hKh1 ñ h1 (P ñ h‘ h1 (Q

Here hKh1 asserts the compatibility of h and h1 (Dh2. h‘h1 “ h2).
Informally, ramify can be read as “the result of applying c in a state
R is R1 if replacing P inside R with Q yields R1”. Magic wand
binds more loosely than any other operator.

Ramify is sufficiently abstract that it can be hard to appreciate.
As an initial demonstration of its power, observe that the frame rule
(modulo some restrictions on free variables as discussed below) is a
direct consequence because P › F $ P › pQ ´́› Q›F q.

Next, let us apply ramification to verify the following spec, in
which x ÞÑ ´ is the standard notation for Dx1. x ÞÑ x1.

tx ÞÑ ´ Y› y ÞÑ ´u *x = a tx ÞÑ aY› y ÞÑ ´u
RAMIFY emits two subgoals. The first precisely matches the stan-
dard small axiom for store update in separation logic:

tx ÞÑ ´u *x = a tx ÞÑ au
The second is the following ramification entailment, whose proof is
direct from the associated definitions:

x ÞÑ ´ Y› y ÞÑ ´ $ x ÞÑ ´ › px ÞÑ a ´́› x ÞÑ aY› y ÞÑ ´q (12)

Free variables Notice that RAMIFY has a side condition to pacify
the usual free variable bugaboo. Usually this is no big deal, but it
causes trouble when we want to use ramification to verify commands
of the form x =fp. . .q, since x is modified and we may want to refer
to it in the postcondition. One sufficient solution, which pleasingly
removes all free variable side conditions, is to use variables as
resource [BCY06], but this introduces other complications. Another
solution is to use the following variant of the ramify rule:

RAMIFYASSIGN

tP u x1 “ fp. . .q tQu R $ P › pQ ´́› rx ÞÑ x1sR1q
tRu x “ fp. . .q tR1u

:x1 R fvpR,R1, P qYvarspfq ^ fvpQ ´́› R1qXmodif pfq “ H

:

RAMIFYASSIGN is a consequence of RAMIFY and the usual rules
for assignment and sequence if we are allowed to make the local pro-
gram transformation from x =fp. . .q to x1=fp. . .q; x = x1 in which
x1 is always chosen fresh. From now on we will sweep free variable
issues under the rug, silently using RAMIFYASSIGN when needed.

Lookup Because points-to facts may be buried inside shared
parts of the state, we find it convenient to use the global rule for
lookup [Rey02] instead of the standard local one of separation logic:

LOOKUP

tDx1. py ÞÑ x1 › trueq ^ rx ÞÑ x1sP u x = *y tP u x1 R fvpP, yq
In fact, RAMIFYASSIGN is able to derive LOOKUP from the standard
local separation logic axiom.

4. Reasoning about Ramifications
To set the stage for the verification of our examples, we now present
techniques for general reasoning about ramifications and link ab-
stract mathematical reasoning about graphs to spatial ramifications.

3 That is, › and ´́› are related by P › Q $ R ô P $ Q ´́› R.

4.1 Ramification Library

Our ramification library is a collection of lemmas that help reduce
complicated ramifications and related entailments. Some of the more
general-purpose lemmas, which can handle simplifications such as
removing frames that occur within ramifications, are grouped in
Fig. 2. Other lemmas in our library are specific to certain data
structures such as graphs; we will meet some of these in §4.3.

Some of the lemmas in Fig. 2 require that various predicates be
precise, which means that whenever P is satisfied on a sub-state
(h1 ď h3

def“ Dh2. h1 ‘ h2 “ h3), that sub-state must be unique:

precisepP q def“ @h1, h2, h3. h1 ď h3 ñ h2 ď h3 ñ
h1 (P ñ h2 (P ñ h1 “ h2

All the predicates we consider here are indeed precise, so this is
never a concern in this paper.

Lemmas 4.3 and 4.4 use ´́�›, the existential magic wand:

h (P ´́�› Q
def“ Dh1. hKh1 ^ h1 (P ^ h‘ h1 (Q

This operator can be tricky because one does not know which copy
of P has been pulled out of Q, but is handy sometimes.

Lem. 4.1 allows one to frame away F within an overlapping
conjunction in order to focus on an easier entailment. Perhaps
surprisingly, both P and Q need to be precise for it to hold.

Lem. 4.2 and 4.3 are analogues of Lem. 4.1 for classical con-
junctions. Although Lem. 4.2 is more immediate, the premise
R $ P › pQ ´́› R1q may sometimes be difficult to establish.
In particular, one would need to show that P can always be found
in a state satisfying R, which is not necessarily the case; it is true
in the original ramification because the state satisfies pP › F q ^R.
Lem. 4.3 remedies this by requiring the subtler condition that if P
may be found in R, then any way of adding Q instead of P yields
R1. We use this lemma to prove the pop program in §6.

Lem. 4.4 allows one to ignore parts of the state that remain
invariant during an update. For instance, a procedure may require
some piece of state in its precondition that is not modified and
thus percolates unchanged to its postcondition. For the lemma to
apply, that piece has to be described precisely enough by F that
R1 is invariant under swapping it for any other satisfying F (third
premise). Precision of P is required to force the same sub-state of
R to satisfy both F › true and Q ´́› R1 (second and last premises),
and R $ P › F › true makes sure that R always contains P › F .

Finally, Lem. 4.5 and 4.6 allow one to split a ramification over
either disjoint or overlapping pieces of states into independant
ramifications over each of these states. This is crucial to make the
proof of some ramification entailments modular, for instance when
reasoning about the effects of an update on both a global graph and
a set of overlapping pointers as in our proof of Cheney’s algorithm
(see §7), or when proving the dag copying program of §A.

This ramification library is by no means exhaustive, nor do
we use all of it in the examples presented here. Rather, we think
that these lemmas demonstrate that ramification entailments can be
reasoned about using the intuition that they represent updates to
the state. The lemmas we will present in §4.3 for ramifications on
graphs and dags further reinforce that claim.

4.2 Exact Graph and Dag Predicates

In this section, we define mathematical graphs γ and dags δ; we will
provide ways to reason about ramifications which involve them in
the next section. Before we do so, however, let us consider whether
our job would be any easier if we were only worried about shape
instead of functional correctness, e.g. if we tried to verify mark with
the spec tdagpxqu mark(x) tdagpxqu.

As in Fig. 1, the proof is straightforward until the first recursive
call on line 8. After framing away the root pointer x ÞÑ 1, l, r, we
apply RAMIFY, which emits the following entailment, in which P

www.manaraa.com

4.1: Frame within Y› Ramification
precisepP,Qq P Y› R $ P › pQ ´́› QY› R1q
pP › F q Y› R $ P › pQ ´́› pQ › F q Y› R1q

4.2: Frame within ^ Ramification 1
precisepP q R $ P › pQ ´́› R1q

pP › F q ^R $ P › pQ ´́› pQ › F q ^R1q
4.3: Frame within ^ Ramification 2

P ´́�› R $ Q ´́› R1

pP › F q ^R $ P › pQ ´́› pQ › F q ^R1q

4.4: Exact Frame within Ramification
precisepP q R $ P › F › true F ´́�› R1 $ F ´́› R1 R $ P › pQ ´́› R1q

R $ P › F › pQ › F ´́› R1q
4.5: Disjoint Ramification

R $ P › pP 1 ´́› R1q S $ Q › pQ1 ´́› S1q
R › S $ P ›Q › pP 1 ›Q1 ´́› R1 › S1q

4.6: Y›-piecewise Ramification

precisepP, P 1q @i. P Y› Qi $ P › pP 1 ´́› P 1 Y› Q1
iq

P Y› Q1 Y› Q2 $ P › pP 1 ´́› P 1 Y› Q1
1 Y› Q1

2q
Figure 2: Some general-purpose lemmas from our ramification library.

and Q are the pre- and postconditions from the recursive call:

Rhkkkkkkkkkikkkkkkkkkj
dagplq Y› dagprq $

Phkkikkj
dagplq ›p

Qhkkikkj
dagplq ´́›

R1hkkkkkkkkikkkkkkkkj
dagplqY›dagprqq

Unfortunately, this entailment turns out to be invalid. Recall that
our ramification P › pQ ´́› R1q idiom represents a state update,
in which P is substituted for Q in R to yield R1. Here this means
substituting one dagplq for another dagplq, which on its surface
seems reasonable. The problem is that the “ramified away” state
pQ ´́› R1q can have dangling pointers into the “local” state P ; if P
is mangled too badly as it is transformed into Q then those pointers
break in the recombined state R1 (here dagplq Y› dagprq):

l r

sl1 r1 �
l r

l1 l2 r1

In this example, the update on dag l has freed node s and allocated
a fresh node l2 instead. Although l is still a dag afterwards, r is not,
so we will not be able to prove dagplq Y› dagprq.

This is not an artificial problem stemming from our approach.
In fact, the failure of the ramification entailment indicates that
tdagplqu mark(l) tdagplqu is too weak of an inductive specifi-
cation: overly aggressive changes to the pointer structure of the left
sub-dag could make the recursive call to the right sub-dag crash,
and we must reflect that reality in the specification for mark.

There are several solutions to this problem, but for this paper
choose the most powerful: proving functional correctness. In §8.3 we
will discuss some other possibilities that can yield more lightweight
shape proofs at the cost of some additional formalism.

Mathematical graphs We define the mathematical representation
of a directed binary graph as a quadruple pV,D,L,Eq, where V
is a finite set of vertices, D is some set of data, L : V Ñ D is a
labeling function associating each vertex v with some data d, and
E : V Ñ pV Zt0uq ˆ pV Zt0uq associates each vertex with up to
two successors. To ease the matching between a mathematical graph
and its heap representation we usually take V Ă Loc and D Ď Val.

Given a mathematical graph γ “ pV,D,L,Eq, we often write
x P γ for x P V Zt0u, S Ď γ for S Ď V Zt0u, and γpxq
for pLpxq, Epxq.1, Epxq.2q. We define the update of γ at node v,
written rv ÞÑ pd, l, rqsγ, where l, r P V Ytvu Zt0u and d P D, as:

rv ÞÑ pd, l, rqspV,D,L,Eq def“
pV Y tvu, D, rv ÞÑ dsL, rv ÞÑ pl, rqsV q

A node y is the successor of a node x P γ, written x
γ� y, or simply

x � y when γ is clear from context, if either Epxq “ py, zq or
Epxq “ pz, yq for some z. A node y is reachable from x, written
x

γ�˚ y or x �˚ y, if px, yq is in the reflexive transitive closure�. The reachability set of x P γ, written reachpγ, xq, is defined as:

reachpγ, xq def“ ty | x γ�˚ yu

We also lift reachability to sets of vertices S “ tv1, . . . , vnu Ď V :

reachpγ, Sq def“ reachpγ, v1q Y ¨ ¨ ¨ Y reachpγ, vnq
Given a graph γ “ pV,D,L,Eq and a set of vertices S Ď V ,

it is often useful to restrict γ to those vertices reachable from
(respectively not reachable from) the vertices in S, written γ Ó S
(and respectively γ Ò S). Accordingly, we define (where f ç S is
the function obtained from f by restricting the domain to the set S):

γ Ó S def“ pV 1 “ reachpγ, Sq , D, L ç V 1, E ç V 1q
γ Ò S def“ pV 1 “ V zpreachpγ, Sqq, D, L ç V 1, E ç V 1q

The quadruple pV 1, D1, L1, E1q “ γ Ò S is not necessarily a graph,
since the edge function E1 may point outside of the new set of edges
V 1. However, γ Ó S is always a graph: the subgraph of γ reachable
from S. We sometimes write γ Óx and γ Òx for γ Ó txu and γ Ò txu.
By convention, if S Ę V then pV,D,L,Eq Ó S is the empty graph.

Spatial graphs We tie a mathematical graph γ to a spatial (in-
heap) graph by adding γ as a parameter to graph:

graphpx, γq def“ px “ 0^ empq _ Dd, l, r. γpxq “ pd, l, rq ^
x ÞÑ d, l, r Y› graphpl, γq Y› graphpr, γq

Note that graphpx, γq “owns” only the spatial representation of the
portion of γ that is reachable from x; γ may contain other nodes.
This is expressed by the following lemma, that “explodes” a graph
into its individual nodes. We use the iterative star notation, defined
as emp if the set that is being iterated over is empty and as follows
otherwise, given a predicate P pxq on x:

‹xPtx1,...,xnuP pxq def“ P px1q › ¨ ¨ ¨ › P pxnq
Lemma 4.7 For every graph γ “ pV,Eq and node x P γ,

graphpx, γq %$ ‹vPreachpγ,xqv ÞÑ γpvq
Generally speaking, reasoning at this level is undesirable in

program proofs, and ramification crucially allows us to remain at
the level of graph instead. However, this lemma is useful both as
a sanity check and to prove the general lemmas about ramifying
graphs given in the next section.

We likewise enrich dag with a mathematical graph δ:

dagpx, δq def“ px “ 0^ empq _ Dd, l, r. δpxq “ pd, l, rq ^
x ÞÑ d, l, r › pdagpl, δq Y› dagpr, δqq

Moreover, the predicate dagpx, δq is satisfiable if and only if
δ Ó x is indeed a dag, as enforced by the › in the spatial predicate:

Lemma 4.8 For every graph δ and variable x,
dagpx, δq %$ graphpx, δq ^ pδ Ó x is acyclicq

Finally, we define the following shorthand for describing multi-
ple sub-graphs of the same graph from a root set S “ tv1, . . . , vnu:

graphspS, γq def“ graphpv1, γq Y› ¨ ¨ ¨ Y› graphpvn, γq
dagspS, δq def“ dagpv1, δq Y› ¨ ¨ ¨ Y› dagpvn, δq

If S “ H then both predicates denote emp.

www.manaraa.com

4.3 Reasoning about Graph and Dag Ramifications

One advantage of proving functional correctness is that we can
tightly connect our mathematical reasoning with our spatial reason-
ing. Here we state lemmas that do just that.

First, the spatial graph (and thus dag) predicates are precise.

Lemma 4.9 For all S and γ, precisepgraphspS, γqq.
Our next lemma lets us reroot collections of sub-graphs provided

that we preserve the set of reachable nodes:

Lemma 4.10 If reachpγ, Sq “ reachpγ, S1q, then

graphspS, γq %$ graphspS1, γq
Our third lemma helps us extend a graph with fresh nodes.

Lemma 4.11 (Graph Growth)
x ÞÑ d, x, x $ graphpx, rx ÞÑ pd, x, xqsq (13)

x ÞÑ d, x, r › graphpr, γq $ graphpx, rx ÞÑ pd, x, rqsγq (14)

x ÞÑ d, l, r › graphsptl, ru, γq $ graphpx, rx ÞÑ pd, l, rqsγq (15)

x ÞÑ d, l, r › dagsptl, ru, δq $ dagpx, rx ÞÑ pd, l, rqsδq (16)

First, (13) a graph cell x whose successors are both itself corre-
sponds to a singleton graph rx ÞÑ pd, x, xqs.4 Second, (14) if a node
x has a loop to itself on the left and a pointer to an existing graph on
the right,5 then we can add x to the graph; not shown is the mirrored
case when the loop is on the right. Third, (15) if x links to two
(possibly equal) graph nodes then we can again add x to the graph.
The first two cases need to be stated separately because x R γ means
that graphpx, γq is K. Finally, (16) is the analogue of (15) for dags;
we do not need analogues for (13) and (14) because dags must be
acyclic.

The frame rule, combined with the › between a parent and its
descendants and equation (16), is enough to mutate the root of a
dag. However, an unrestricted graph has Y› between the parent and
its successors, so we need to use RAMIFY to update the root. The
following lemma helps discharge the associated ramifications:

Lemma 4.12 (Single Graph Node Update)

γpxq “ pd, l, rq γ1 “ rx ÞÑ pd1, l1, r1qsγ
graphsptx, l1, r1u Y S, γq $ x ÞÑ d, l, r ›

px ÞÑ d1, l1, r1 ´́› graphsptx, l, ru Y S, γ1qq (17)

γpxq “ pd, l, rq γ1 “ rx ÞÑ pd1, l, rqsγ
graphpx, γq $ x ÞÑ d, l, r › px ÞÑ d1, l, r ´́› graphpx, γ1qq (18)

Lem. 4.11 handles the cases in which we are adding a fresh
node, so in (17)-(18) we need only consider the case in which
tx, l, r, l1, r1u Ď γ. The case of interest is (17), a full update to
node x, where we are updating not only the data d to d1 but also
the pointers l and r to l1 and r1 respectively. The precondition is a
Y›-joined set of subgraphs of γ, including x, l1, and r1, as well as
arbitrary others S. After the update, the state contains subgraphs at
x (which now contains l1 and r1) and S, as well as the old l and r
(previously contained in the old x), which may now be disconnected
from txu Y S. In practice we often care about far simpler updates;
(18) is a direct consequence of (17), and handles the case in which
we only wish to update the data field.

Next, we observe that an update that preserves the set of reach-
able nodes cannot remove any overlapping points-to fact. The same
remark is true of dags as well, replacing graphs with dags every-
where in the lemma below.

4 rx ÞÑ pd, x, xqs def“ ptxu, D, rx ÞÑ ds, rx ÞÑ px, xqsq
5 Observe that r can be equal to 0, in which case graphpr, γq is just emp.

Lemma 4.13 (Points-to preservation)

reachpγ1, S1q Ě reachpγ, Sq
graphspS, γq Y› x ÞÑ ´ $ graphspS, γq ›
pgraphspS1, γ1q ´́› graphspS1, γ1q Y› x ÞÑ ´q

Our final lemma applies when we wish to update an entire
subgraph (typically with a function call) rather than a single node.

Lemma 4.14 (Subgraph Update)

reachpγ1, S1
1q Ě reachpγ, S1q γ1 Ò S1

1 “ γ Ò S1

graphspS1, γq Y› graphspS2, γq $ graphspS1, γq ›
pgraphspS1

1, γ
1q ´́› graphspS1

1, γ
1q Y› graphspS2, γ

1qq (19)

reachpδ1, S1
1q Ě reachpδ, S1q δ1 Ò S1

1 “ δ Ò S1

dagspS1, δq Y› dagspS2, δq $ dagspS1, δq ›
pdagspS1

1, δ
1q ´́› dagspS1

1, δ
1q Y› dagspS2, δ

1qq (20)

First, (19) lets us ramify an update to a subgraph (or set of subgraphs)
as long as all previously reachable nodes are still reachable (to
prevent e.g. the dangling pointer problem outlined in §3.3) and
the mathematical update is local. Second, (20) gives us the same
property for dags (if our newly substituted sub-dag does not contain
a cycle then our whole dag will not suddenly become cyclic).

5. Proving mark on Dags
We are ready at last to polish off the proof of mark from Fig. 1.

Mathematical marking One of our goals is to translate mathe-
matical reasoning into spatial reasoning. Define the mathematical
marking mpγ, rq of a graph γ “ pV,D,L,Eq starting from the
vertex r P V as marking all nodes reachable via unmarked nodes
from r. Formally, define a new relation

γ�0 as follows:

x
γ�0 y iff Dz. γpxq “ p0, y, zq _ γpxq “ p0, z, yq

As before, we omit the subscript γ when it is clear from context and
write

γ�˚
0 for the reflexive transitive closure. The marking mpγ, rq

of γ from r is then pV,D,L1, Eq where, for all x P V ,

L1pxq “
#
1 if r �˚

0 x

Lpxq otherwise

We also need to describe the effect of marking a single node in γ,
accomplished with m1pγ, xq, that sets the marked bit of node x in
γ to 1. The following lemma about mathematical markings now
becomes crucial to prove the functional correctness of mark.

Lemma 5.1 For all graphs γ and nodes x, y P γ,
mpmpγ, xq, yq “ mpmpγ, yq, xq (21)

Moreover, if γpxq “ pd, l, rq, then
mpmpm1pγ, xq, lq, rq “ mpm1pmpγ, lq, xq, rq “
m1pmpmpγ, lq, rq, xq “ mpm1pmpγ, rq, xq, lq “ mpγ, xq (22)

That is, (21) we can swap the order of two mathematical markings,
and (22) regardless of which order we mark the root and children
(either child first by equation 21), at the end we are fully marked.

Spatial marking Our first remaining tasks are the ramifications
on lines 9 and 11. In both cases we frame away the root node and
then apply RAMIFY, yielding the following entailments:

dagpl, δq Y› dagpr, δq $ dagpl, δq › pdagpl,mpδ, lqq ´́›
dagpl,mpδ, lqq Y› dagpr,mpδ, lqqq

(23)

dagpl,mpδ, lqq Y› dagpr,mpδ, lqq
$ dagpr,mpδ, lqq › pdagpr,mpmpδ, lq, rqq ´́›

dagpl,mpmpδ, lq, rqq Y› dagpr,mpmpδ, lq, rqqq
(24)

Observe that the first ramification directly implies the second by
instantiating δ with mpδ, lq in the first entailment and using the

www.manaraa.com

commutativity of Y› to swap the roles of l and r. To prove (23), we
apply Lem. 4.14 to reduce the spatial ramification entailment to a
pair of mathematical subgoals. The first mathematical subgoal,

reachpmpδ, lq, lq Ě reachpδ, lq,
i.e., that every vertex reachable from l in the old dag δ is still
reachable from l in the new dag mpδ, lq, is immediate because the
mathematical marking function m changes neither the vertices nor
the edges of the dag δ. The second mathematical subgoal,

mpδ, lq Ò l “ δ Ò l,
i.e., that the part of δ that is not reachable from l is identical to
the part of mpδ, lq that is not reachable l, is almost as simple. By
the definition of m, we know that the only difference between δ
and mpδ, lq is that the new labeling function has marked vertices
reachable via unmarked paths in δ from l; all other labels are
maintained. Since the second mathematical subgoal only cares
about changes to the portion of the mathematical graph that is not
reachable from l, and those labels are unchanged, we are done.

Finally, to establish the postcondition in line 12 from line 11,
apply Lem. 4.11 to derive dagpx,m1pmpmpδ, lq, rq, xqq, which by
Lem. 5.1 is equivalent to our postcondition.

5.1 Observations
Our proof of mark (i.e., Fig. 1 and §5) is short and our invariants
at each program point are straightforward. We were able to reuse
our initial ramification (23) to prove our second (24). Essentially all
of the spatial difficulties were handled by our ramification library.
Moreover, by Lem. 5.1 our proof is easy to modify to accommodate
trivial changes in the program like moving the update in line 6 to
after one or both of the recursive calls in lines 8 and 10, swapping the
order of the recursive calls, etc. Our ability to accommodate these
kinds of changes is an indication of the power of using ramification
to separate mathematical and spatial reasoning from each other.

In contrast, previous work on verifying these kinds of algorithms
used complex and brittle invariants so that they could always apply
the frame rule. For example, consider Bornat et al. [BCO04], which
is the progenitor of most previous work in applying separation logic
to reason about data structures with intrinsic sharing.

Bornat et al. define mathematical dags as tree-shaped terms
whose nodes are either labeled proper nodes (written x : Node δl δr)
or references to a label elsewhere in the dag (written Ptr x) to ex-
press sharing. Their spatial pdag predicate grants ownership of a
node at the point that corresponds to where it is declared in the math-
ematical definition (roughly speaking, pdag x px : Node δl δrq def“
x ÞÑ v, l, r › pdag l δl › pdag r δr), but not when it is referenced
again (similarly, pdag x pPtr xq def“ emp). Each node can only be
declared once (although it may be referenced many times), and the
order in which they are declared must match the order in which the
program traverses the dag, as the authors note [BCO04, §8, p. 7]:

This predicate is specifically designed to support a left to
right scan, as are the formulae on which it is based. It seems
difficult to avoid this complication.

Unfortunately, the consequences of this style of definition ricochet
to many other parts of the associated verification, including the
statement of the specification of mark and its exact implementation.
Changes in one part of the system (e.g., swapping the order of
traversal) required changes to other parts of the system (i.e., the
definition of pdag, the specification of mark, and the invariants at
each program point). Altogether, the style of hacking the state into
many disjoint pieces to reason about data structures with intrinsic
sharing pays a heavy price to enable the frame rule, resulting in
“dauntingly subtle” [BCO04, §8.4, p. 9] definitions and verifications.

In contrast, our definition of mathematical graphs is traditional,
our dag predicate is natural, and our specification for mark is straight-

forward. None of these depend on internal implementation specifics
of the algorithm such as traversal orders. Moreover, our program
invariants are easy to understand, easy to update to accommodate
minor changes in the algorithm, and easy to verify using ramification
and our ramification library. Verifications utilizing ramifications are
both more natural and more robust than those in previous work.

Marking possibly cyclic graphs The mark function can also
mark unrestricted graphs. Because Lemmas 4.14 and 5.1 both apply
to graphs as well as dags, the only substantial change to the the
proof in Fig. 1 is for line 6. Here dags only require the frame rule
due to the › between a parent and its children but unrestricted graphs
require an additional ramification due to the additional Y›:

x ÞÑ 0, l, rY› graphsptl, ru, γq $ x ÞÑ 0, l, r ›
px ÞÑ 1, l, r ´́› x ÞÑ 1, l, rY› graphsptl, ru,m1pγ, xqqq

This ramification follows directly from Lem. 4.12.

Termination Our work here is primarily concerned with partial
correctness, but suppose we were interested in total correctness as
well. The dag argument is simpler: each recursive call is on a strictly
smaller subheap thanks to the › between a parent and its children;
notice that this argument is valid regardless of whether we mark the
root first, at line 6, or after one or both recursive calls. In contrast, the
termination argument on unrestricted graphs is more complicated
because the Y› between root and successors means that the subheap
may not be any smaller at the recursive calls. Instead, each recursive
call must be on a graph with fewer unmarked nodes; if we recurse
before coloring the root then we may not terminate.

5.2 Other Graph Algorithms

To prove that ramification can apply equally well to programs that,
unlike mark, mutate the link structure of the graph, we also verified
copy_dag and dispose_graph. The full details are in Appendices A
and B respectively; here we give only the key insights.

Copying dags The goal of the copy_dag function is to make a
deep (structure-preserving) copy of its argument. It uses a data field
in each original node to record the location of its corresponding
copy (or 0 if the node has not yet been copied). Just as with mark,
a straightforward recursive implementation is compact and works
as follows. If the root is already copied then return immediately;
otherwise, recursively copy the left and right children, allocate a
new node to be the root’s copy, and set its fields as appropriate.

To make the verification hang together, we need to add a new fea-
ture to our separation logic: regions [LG88]. Briefly, regions indicate
disjoint zones in the heap, and a spatial predicate P can be tagged
with a region identifier α to become Pα, indicating that P is entirely
contained in region α. Predicates in different regions are always
disjoint, even when connected by sharing operators such as Y›.

Regions are useful when we are faced with the following prob-
lem, in which 7 is some sharing operator such as ^ or Y›:

pP ›Qq7pR › Sq ?%$ pP 7Rq › pQ7Sq
That is, we have some disjoint formulas P and Q, which overlap
with two additional disjoint formulas R and S, and we wish to
shuffle resources around until the P and Q are overlapping with
each other and are disjoint from the overlapping Q and S.

The% direction is immediate. Unfortunately, verifying copy_dag
requires the $ direction after making both recursive calls and
reaching the following invariant, in which l and r are the left and
right children of the root and ll and rr are their respective copies:

pdagpl, δq › dagpll, δ1qq Y› pdagpr, δq › dagprr, δ1qq
Now we need to apply the rule of consequence to disentangle the
original children from their overlapping copies:

pdagpl, δq Y› dagpr, δqq › pdagpll, δ1q Y› dagprr, δ1qq

www.manaraa.com

1 struct node { struct node *next ,*l,*r; };
2 void pop(void) { //tlistpsq ^ treeptqu
3 if (!s) return;
4 struct node *c = s;
5 // tps ÞÑ n, l, r › listpnqq ^ treeptq ^ c “ su
6 s = c->next;
7 // tpc ÞÑ s, l, r › listpsqq ^ treeptqu
8 // tpc ÞÑ s, l, r › listpsqq ^ psktreept, π Z tcuq › ptrspπ Z tcuqqu
9 t = tree_del(t,c);

10 //�tpc ÞÑ s,´,´ › listpsqq ^ psktreept, πq › c ÞÑ ´,´,´ › ptrspπqqu
11 // tplistpsq ^ treeptqq › c ÞÑ ´,´,´u
12 free(c);
13 } // tlistpsqq ^ treeptqu

Figure 3: Removal from a threaded tree.

The problem is that the implication is just not true without carrying
around some additional information via regions: specifically, that the
original dag is in region α while the copy is being created in region
β. In general regions help because they ensure that P does not have
any overlap with S despite the intermediate sharing operator 7:

pPα ›Qβq7pRα › Sβq %$ pP 7Rqα › pQ7Sqβ (25)

Others have run across the same problem in diverse contexts
including RGSep [Vaf07] and shape analysis for overlaid lists and
trees [LYP11] and have turned to regions for similar reasons.

Interestingly, our verification also uses regions in an novel way
to split one large ramification entailment (equation 35) into two
smaller entailments via Lem. 4.5 from our ramification library. This
second use of regions is not vital to verify copy_dag, but it does
simplify things nicely. Other than the use of regions, the verification
proceeds straightforwardly.

Disposing graphs Disposing a graph is usually done in two steps:
first, suppress all sharing between nodes of the graph, so that each
node has at most one predecessor, thus computing a spanning tree
of the graph; and then dispose the tree. Apx. B contains the novel
verification for the first step; verifying the second is standard. The
real proof effort is on the mathematical side; the spatial aspects of
the verification are no more complicated than mark and copy_dag,
and do not require regions. Because our definition for graph uses
Y›, we are able to establish emp at the end, indicating that we have
completely freed the structure.

6. Overlaid Data Structures
Reasoning about threaded trees Our examples so far have fo-
cused on graph manipulations. Ramification is also applicable in
other interesting contexts, including overlaid data structures. Here
we focus on one kind of overlaid structure: threaded trees, which
overlay lists and trees. Each node has three links to other nodes of
the data structure: a “next” pointer of a singly-linked list, and the
“left” and “right” fields of a binary tree. This is a popular type of
overlaid data structure: the linked list may record the set of elements
some order of particular interest (e.g., first-inserted to most recent),
while the tree provides efficient out-of-order lookup.

Our case study is a procedure that removes the first element
of the linked list from the data structure, inspired by what can be
found in the Linux deadline I/O scheduler [LYP11]. The code and
annotations are shown in Fig. 3. It assumes two global variables s
and t that point respectively to the head of the linked list and the root
of the tree. The precondition states that the two shapes span exactly
the same memory cells, enforced by the conjunction ^. Removing
from the list (line 6) merely advances the head pointer, but we cannot
stop there because it leaves the overlaid structure in an inconsistent
state (the items in the list and the tree must be identical).

Removing from the tree is likely to be operationally complex,
potentially involving operations to rebalance, reroot, or otherwise

rotate parts of the tree. Thus, we abstract this operation and assume
that it is performed by a function tree_del(t,c). Its spec has to
express two particular facts to ensure that it is well-behaved w.r.t.
the overlaid list structure: it must not tamper with the list fields, and
the resulting new tree should cover the same nodes as before except
for c. We enforce the first constraint by not giving any access rights
on the list fields to the procedure, i.e. by restricting its precondition
to the “skeleton” of the tree, and the second constraint by recording
the set of nodes encompassed in the tree shape. We therefore define
the following predicate that skips the list fields of each node:

sktreepx, πq def“ px “ 0^ emp^ π “ Hq _ Dl, r, πl, πr.
x` 1 ÞÑ l, r › sktreepl, πlq › sktreepr, πrq ^
π “ txu Z πl Z πr

The tree predicate can be split into a skeleton and a bag of points-to
predicates, using the pointers predicate ptrs:

ptrsptx1, . . . , xnuq def“ x1 ÞÑ ´ › ¨ ¨ ¨ › xn ÞÑ ´
treeptq ô Dπ. sktreept, πq › ptrspπq (26)

The list predicate is defined in the standard way for nil-terminated
acyclic lists with two data fields:

listplq def“ pl “ 0^ empq _ Dl1, x, y. l ÞÑ l1, x, y › listpl1q
We moreover assume that each address is aligned as a multiple of 3,
to prevent skewing, in which a node in the tree might overlap two
nodes in the list in a state satisfying listpsq ^ treeptq.

A general observation about how overlaid data structures are
manipulated is that changes to fields of only one structure do not
affect the other, e.g., list induction easily proves that

x ÞÑ n, l, r ´́�› listpsq $ x ÞÑ n, l1, r1 ´́› listpsq
This reads as: if a state may be completed by a node to form a linked
list, then completing it by any other node at the same location and
with the same next field also yields a list. The same property for
skeleton trees follows by induction on the size of the tree:

sktreept, πq ´́�› listpsq $ sktreept1, πq ´́› listpsq (27)

Verification The spec of tree_del follows the discussion above:

tsktreept, πZtcuquu=tree_del(t,c)tsktreepu, πq›c`1 ÞÑ ´,´u
The proof sketched in Fig. 3 is mostly straightforward: if s is

nil then the list is empty, hence so is the tree and the postcondition
is trivially satisfied; otherwise, we unfold the list predicate, which
enables the lookup at line 6. After that, we split the tree according
to (26) and apply the following ramification:

pc ÞÑ s, l, r › listpsqq ^ psktreept, π Z tcuq › ptrspπ Z tcuqq
$ sktreept, π Z tcuq › `c` 1 ÞÑ ´,´ › sktreept1, πq ´́›

pc ÞÑ s,´,´ › listpsqq ^
pc` 1 ÞÑ ´,´ › sktreept1, πq › ptrspπ Z tcuqq˘

This ramification follows a general pattern, and we can reduce it
to a much simpler one by noticing that the right-hand side conjunct
is automatically handled by Lem. 4.3 from our ramification library,
which can remove frames that occur within ^ ramifications. This
yields the following simpler proof obligation:

sktreept, π Z tcuq ´́�› c ÞÑ x, y, z › listpsq
$ c` 1 ÞÑ ´,´ › sktreept1, πq ´́› c ÞÑ x,´,´ › listpsq

This entailment is similar to (27). The rest of the proof is immediate.

7. Cheney’s Garbage Collector
It is time for the acid test: verifying the functional correctness
of Cheney’s garbage collector [Che70]. The general setting is as
follows. There are two disjoint, equally large regions of memory,
the from-space and the to-space, starting respectively at the address
pointed to by from and to. Programs manipulate objects in the from-
space. When the program wishes to allocate but the from-space has
run out of room, we garbage collect by copying the entire graph

www.manaraa.com

of reachable objects into the to-space before swapping from and to
and resuming normal execution. If the former from-space had any
unreachable objects then the new from-space has some free space.

In the tradition of previous work, we make a number of simplifi-
cations. We assume that there is a single root from which all active
objects are reachable, i.e. any object not reachable from that root can
be safely reclaimed. We also restrict our study to even-aligned two-
field objects that contain only pointers (including the null pointer)
rather than arbitrary integers. Our proof can be modified to verify
the unsimplified algorithm; e.g., we can allow data by the usual
systems hack of requiring that data be odd and pointers be even.

Remarkably, Cheney’s algorithm migrates the graph from one
space to the other using only a constant amount of extra memory,
which is in short supply during garbage collection. Contrast this
with our dag-copying example of §A that required linear additional
space (in both the data fields and the function stack). The cost is
that we mangle the original graph, which we can live with because
afterwards it will be garbage. The trick is that Cheney rewires the
first field in each already-copied object in the from-space to point
to its copy in the to-space. The collector can determine whether an
object has already been copied, and moreover discover the copy’s
address, by checking if its first field points into the to-space.

Following [Gas11], we implement the algorithm as two func-
tions: collect and copy_ref, shown in Fig. 4. In addition to the
to and from pointers (fixed for the duration of the collection), they
maintain two additional pointers into the to-space. First, the scan
pointer separates the fully-processed “scanned” objects, whose point-
ers point into the to-space, from the partially-processed “queued”
objects, whose pointers point into the from-space. Second, the free
pointer distinguishes the first unused address in the to-space.

Initially (line 3), scan “ free “ to, meaning that no objects
have been copied and the entire to-space is free. The process is
initiated by copying the object pointed to by the root r (line 4), which
allocates two cells of memory at the beginning of the to-space by
increasing free and fills them with the values in the original object,
now enqueued. After that the program loops (lines 5–12) until no
queued objects remain, calling copy_ref on both object fields (lines
8 and 11) before incrementing scan to indicate that the object has
been scanned. Each call to copy_ref swings the from-space pointers
into the to-space, queuing newly encountered nodes as necessary.
Fig. 5 presents an intermediate state in the execution, with one node
copied and scanned and one node queued for scanning.

Formal specification To represent states of the execution we use
the following definitions. Mathematical graphs are pairs pV,Eq, i.e.
we remove D and L, and the spatial predicate is accordingly

graphpx, γq def“ px “ 0^ empq _ Dl, r. γpxq “ pl, rq ^
x ÞÑ l, r Y› graphpl, γq Y› graphpr, γq

We define shorthand to express whether a node is in the from- or
to-space and whether it has been copied (recall that to, from and
size are constant throughout the execution):

frompxq def“ x “ 0_ from ď x ă from` size

topxq def“ x “ 0_ to ď x ă to` size

copiedpγ, xq def“ x ‰ 0^ frompxq ^ topγpxq.1q
We write frompγq for @v P γ. frompvq and similarly for topγq.
The memory also contains a pool of free addresses, starting at some
x, and the whole from-space, which we use to collect nodes that the
algorithm disconnects (i.e., from-space objects that are no longer
reachable from the to-space and are therefore fresh garbage):

poolpxq def“ ptrsptx, . . . , to` size´ 1uq
fromsp

def“ ptrsptfrom, . . . , from` size´ 1uq
The main end-to-end property of a garbage collector is that the

final graph is isomorphic to the original one. In the middle of a

1 void collect(void **r) {
2 // tpr ÞÑ r0 › graphpr0, γ0q Y› fromspq › poolptoq ^ frompγ0qu
3 scan = free = to;
4 copy_ref(r);
5 while (scan != free)

6 //
"
r ÞÑ to › pgraphpto, γq Y› fromspq › poolpfreeq ^
γ@to « γ0@r0 ^ cheneypγ, scan, freeq

*

7 { //

$&
%
r ÞÑ to › pgraphpto, γq Y› scan ÞÑ q0, q1 Y› graphpq0, γq Y›
graphpq1, γq Y› fromspq › poolpfreeq ^ γ@to « γ0@r0 ^
cheneypγ, scan, freeq ^ scan ď free ´ 2

,.
-

8 copy_ref(scan);

9 //�

$’&
’%
r ÞÑ to › pgraphpto, γ1q Y› scan ÞÑ q1

0, q1 Y› graphpq1
0, γ

1q Y›
graphpq0, γ1q Y› graphpq1, γ1q Y› fromspq › poolpfreeq ^
γ@to « γ0@r0 ^ scan ď free ´ 2 ^
cheneypγ1, scan ` 1, freeq ^ γ1@to « γ@to

,/.
/-

10 //

$&
%
r ÞÑ to › pgraphpto, γ1q Y› fromspq › poolpfreeq ^
γ1@to « γ0@r0 ^ cheneypγ1, scan ` 1, freeq ^
scan ď free ´ 2

,.
-

11 copy_ref(scan + 1);
12 scan = scan + 2; }

13 } //
"
r ÞÑ to › graphpto, γq › fromsp › poolpfreeq ^
topγq ^ γ@to « γ0@r0

*
14

15 void copy_ref(void **p) {
16 //

�pp ÞÑ q Y› graphpq, γqq › poolpfq ^ cheneypγ, p, fq ^ free “ f
(

17 if (*p) {

18 //
"pp ÞÑ q Y› q ÞÑ a, b Y› graphpa, γq Y› graphpb, γqq ›
poolpfq ^ cheneypγ, p, fq ^ free “ f

*
19 void *obj = *p;
20 void *fwd = *obj;

21 //
"pp ÞÑ obj Y› obj ÞÑ fwd, b Y› graphpfwd, γq Y› graphpb, γqq ›
poolpfq ^ cheneypγ, p, fq ^ free “ f

*
22 if (to <= fwd && fwd < to + size){

23 //
"pp ÞÑ obj Y› obj ÞÑ fwd, b Y› graphpfwd, γq Y› graphpb, γqq ›
poolpfq ^ cheneypγ, p, fq ^ free “ f ^ topfwdq

*
24 *p = fwd;

25 //�

$&
%

pp ÞÑ fwd Y› obj ÞÑ fwd, b Y› graphpfwd, γ1q Y› graphpb, γ1qq ›
poolpfq ^ cheneypγ, p, fq ^ free “ f ^ topfwdq ^
cheneypγ1, p ` 1, fq ^ γ1 “ rp ÞÑ fwdsγ

,.
-

26 } else {

27 //
"pp ÞÑ obj Y› obj ÞÑ fwd, b Y› graphpfwd, γq Y› graphpb, γqq ›
poolpfq ^ cheneypγ, p, fq ^ free “ f ^ frompfwdq

*
28 void *new = free;
29 free = free + 2;
30 *new = *obj;
31 *(new + 1) = *(obj + 1);

32 //

$&
%

pp ÞÑ obj Y› obj ÞÑ fwd, b Y› graphpfwd, γq Y› graphpb, γqq ›
new ÞÑ fwd, b › poolpfreeq ^ free “ f ` 2 ^
cheneypγ, p, fq ^ frompfwdq ^ new “ f

,.
-

33 //

$’&
’%

pp ÞÑ obj Y› obj ÞÑ fwd, b Y› new ÞÑ fwd, b Y›
graphpfwd, γ1q Y› graphpb, γ1qq › poolpfreeq ^
free “ f ` 2 ^ cheneypγ, p, fq ^ frompfwdq ^
new “ f ^ γ1 “ rnew ÞÑ fwd, bsγ

,/.
/-

34 *obj = new;

35 //�

$’&
’%

pp ÞÑ obj Y› obj ÞÑ new, b Y› new ÞÑ fwd, b Y›
graphpfwd, γ2q Y› graphpb, γ2qq › poolpfreeq ^
cheneypγ, p, fq ^ free “ f ` 2 ^ frompfwdq ^
new “ f ^ γ2 “ robj ÞÑ newsrnew ÞÑ fwd, bsγ

,/.
/-

36 *p = new;

37 //�

$’&
’%

pp ÞÑ new Y› obj ÞÑ new, b Y› new ÞÑ fwd, b Y›
graphpfwd, γ1q Y› graphpb, γ1qq › poolpfreeq ^
cheneypγ, p, fq ^ free “ f ` 2 ^ frompfwdq ^
new “ f ^ γ1 “ rp ÞÑ newsrobj ÞÑ newsrnew ÞÑ fwd, bsγ

,/.
/-

38 }}} //

$&
%

pp ÞÑ q1 Y› graphpq1, γ1q Y› graphpq, γ1qq › poolpfreeq ^
cheneypγ1, p ` 1, freeq ^ γ@to « γ1@to^
γ1 Ò tp, q, q1u “ γ Ò tp, qu ^ free ě f

,.
-

Figure 4: Proof sketch of Cheney’s garbage collector.

www.manaraa.com

0 0 0

0

to scan free

Figure 5: Transient state of the memory during garbage collection.
Previous field values are indicated by 0 or dotted pointer arrows.

cheneypγ, s, fq def“ topsq ^ topfq ^
|tv | copiedpγ, vqu| “ pf ´ toq{2^ (28)

tto, . . . , f ´ 2u Ď γ Ó to^ (29)

@v P γ.@a, b. γpvq “ pa, bq ñˆ
topvq ^ ppv ă s^ topaqq _ pv ě s^ frompaqqq^
ppv`1 ă s^ topbqq _ pv`1 ě s^ frompbqqq

˙
_ (30)`

frompvq ^ frompbq ^ ptopaq ñ γ@b « γ@pγpaq.2qq˘ (31)

Figure 6: Cheney graphs. Parameter s is the first unscanned address
and f is the beginning of the free space. There are as many nodes in
the to-space as there are copied nodes (28), which ensures that we
never exhaust our free space at line 29. Every cell in the to-space
is reachable (29). For each object, either (30) it is in the to-space
and either scanned with fields pointing to the to-space, or queued
with fields pointing to the from-space; or (31) it is in the from-space,
with fields either entirely pointing to the from-space or with first
field pointing to its copy in the to-space, in which case the second
fields of the object and its copy point to isomorphic sub-graphs.

collection, the loop invariant is more complex; for Cheney it is
that the graph rooted at to is isomorphic to the original one up-to
a canonicalization function, canonpγq. The canonicalization of a
graph γ “ pV,Eq “skips” already copied nodes by following their
first field (which points to their copies). Formally, canonpγq is the
graph pV 1, E1q where V 1 “ tv P V | 	copiedpγ, vqu and, if
Epxq “ pv1, v2q, then E1pxq “ pv1

1, v
1
2q with

v1
i “

#
Epviq.1 if copiedpγ, viq
vi otherwise

We write γ@x « γ1@x1 to denote graph isomorphism between
canonpγq Ó x and canonpγ1q Ó x1. Both frompγq and topγq imply
canonpγq “ γ, so at the end of garbage collection, when the entire
graph has been moved into the to-space, we will have standard
isomorphism between the old graph and the new.

The main constraints satisfied by the graph are enforced in
the mathematical world by the cheney predicate shown in Fig. 6.
Additionally, the following invariant is implicit throughout the proof:

to ď scan ď free ă to`size^ evenpfrom, to, scan, free, γq
Here even forces all objects and global pointers to be aligned on
even boundaries. Notice that a graph entirely in the from-space
is automatically a Cheney graph: frompγq ñ cheneypγ, to, toq.
Similarly, if to P γ and s “ f then cheneypγ, s, fq ñ topγq.
These observations are enough to go from the precondition to the
loop invariant, and from the loop invariant to the postcondition.

Verification of copy_ref We omit the (simpler) spec of copy_ref
that applies the first time it is called in collect (line 4) and focus
instead on the calls made from the main loop (lines 8 and 11).
copy_ref swings one field of a queued object from its original target
in the from-space to its target’s copy in the to-space. If the target
is 0 then no action is required and the post is direct from the pre.

Otherwise, we can unfold the graph (line 16) to expose the target
object in the from-space. We then examine its first field, fwd.

If fwd is in the to-space, then the target object has a copy located
there and we swing the pointer to it. The ramification immediately
follows from Lem. 4.12, slightly modified to handle single-field
updates, and updates the graph to γ1 “ rp ÞÑ fwdsγ (where a single
field update rx ÞÑ ysγ corresponds to rx ÞÑ y, γpxq.2sγ if x is even
and to rx´ 1 ÞÑ γpxq.1, ysγ if x is odd). The actual proof effort at
that point is to mathematically establish cheneypγ1, p`1, freeq and
γ@to « γ1@to. The former holds because the only update is that p
changed from queued in γ to scanned in γ1 (p ă p` 1) and from
pointing to the from-space to the to-space. For the latter, notice that
canonpγqppq “ fwd, so swinging p to point to fwd gives the same
canonical graph: canonpγq “ canonpγ1q, hence γ@to « γ1@to.

If the object has not been copied yet, we reserve two units of
space at the position of the free pointer (by advancing it, line 27),
and fill them with the object’s fields. Since the pool of free space is
kept ›-separated from the current graph of objects, FRAME is able to
deal nicely with the heap mutations up to the assignment at line 35.
Now we rewrite the state to integrate the new object into the main
graph (Lem. 4.11), then swing both the current field p and the first
field of the target object obj to point to the copy new, yielding two
successive ramifications that update the global graph accordingly,
which we can discharge with Lem. 4.12. Once again, RAMIFY and
our library allow us to progress past updates to the shared state; the
actual complexity resides in establishing mathematical facts about
graphs in the postcondition. Their proof is similar to the case in
which fwd was in the to-space to begin with. We have to prove that
new is reachable from to, as required by 29, which holds because p is
reachable from to and points to it. The isomorphism holds because
new and obj have identical contents.

Verification of collect The main function first copies the root
node in the graph using an alternative (simpler) spec for copy_ref
to establish the loop invariant (line 6, in which we leave out the
case r0 “ 0 of an empty graph). It then enters a loop that updates
both fields of the first unscanned object in succession (which may
queue up new objects), repeating until all objects have been scanned.
The looping condition allow us to go from the invariant at line 6
to the assertion at line 7 (in particular, to �˚ scan by (29) so
Lem. 4.10 applies). The ramification at line 9 makes interesting use
of our ramification library. Lem. 4.13 tells us that each individual
pointer in fromsp (as well as the other field of scan) is preserved.
Combining this with Lem. 4.6 yields that the whole of fromsp is
preserved. The graphs are updated thanks to Lem. 4.14. We finally
combine both our conclusions with another application of Lem. 4.6.
To deduce line 10, we fold back the sub-graph rooted at scan into the
main one rooted at to, which leaves the following spatial deduction,
which holds because, together, graphpto, γ1q and fromsp contain
the whole allocated heap:

graphpto, γ1qY› graphpq0, γ1qY› fromsp $ graphpto, γ1qY› fromsp

The second call to copy_ref is analogous to the first, and after we
advance scan we reach the loop invariant.6

Related work Cheney’s garbage collector has been a bench-
mark of sorts for heap-aware verification, especially in separation
logic [MAY06, TSBR08, Gas11]. Previous verifications worked by
exploding the spatial graph into its individual nodes, and grouping
those into several disjoint groups corresponding to the intersections
of various heap regions (from and to-space, scanned and unscanned,

6 In the above proof, the global variable free is modified by copy_ref, but
appears in our ramified assertions. We circumvent this issue by treating
free as a resource: we remove our knowledge about free when copy_ref is
called, and only get to assume what is in copy_ref’s post-condition in the
post-ramified state (e.g. line 9).

www.manaraa.com

R $ P › pQ ´́› R1q Hyp.
tP u c tQu Hyp.

modif pcq X fvpQ ´́› R1q “ H Hyp.

tP › pQ ´́› R1qu c tQ › pQ ´́› R1qu Frame
Q › pQ ´́› R1q $ R1 Modus Ponens

tRu c tR1u Consequence

Figure 7: Proof of RAMIFY.

etc.). Our approach uses a single, generic inductive graph predicate,
and the intricacies of reasoning about those regions is handled at
the level of mathematical graphs. This division of labor yields, in
our opinion, a much more pleasant and concise proof, which enjoys
relatively intuitive and natural invariants.

8. Universality, Strongest Posts, and Extensions
Here we discuss the general applicability of the ramify rule as well
as an alternative form of the rule. We also discuss a number of
extensions to apply ramifications to more examples, including the
overlapping conjunction Y›, regions, and higher-order settings.

8.1 Universality of Ramification
In §3.3 we showed that the frame rule was a consequence of the
ramify rule. Somewhat surprisingly, the converse is also true.

Theorem 8.1 (RAMIFY)

tP u c tQu R $ P › pQ ´́› R1q
tRu c tR1u

fvpQ ´́› R1q X
modif pcq “ H

Proof By the short derivation given in Fig. 7. ˝
Because theorem 8.1 only requires frame and consequence,

ramify is valid in any separation logic. This is very handy, because
it means that we do not need to modify the numerous flavors of
separation logic in previous work to incorporate ramification: it has
been there all along, just waiting for its importance to be recognized.

8.2 Weakest preconditions and strongest postconditions
In fact, our ramify rule appears in the separation logic folklore as a
weakest precondition rule, codified as follows:

Lemma 8.1 (Weakest Pre) Given a postcondition R1 and a speci-
fication tP u c tQu, then P ›pQ ´́› R1q is the weakest precondition,
i.e., given any specification tRu c tR1u, then R $ P › pQ ´́› R1q.

Our examples demonstrate that we can successfully ramify
with weakest precondition. Can we also succeed with strongest
postcondition, i.e., with the following “forward ramify” rule:

FWRAMIFY

tP u c tQu R $ P › true pP ´́�› Rq ›Q $ R1

tRu c tR1u
The pP ´́�› Rq ›Q $ R1 pattern is reminiscent of a pattern used
in RGSep [VP07] to characterize stability by setting R1 to R. In
RGSep the focus is on concurrency, and a thread’s collaborators may
take an unknown number of actions. In our setting we know that a
given specification will execute exactly once, which we leverage by
allowing the consequent to be the more general R1 rather than R.
When P is precise, FWRAMIFY gives the strongest postcondition:

Lemma 8.2 (Strongest Post) Given precondition R and tP u c tQu,
if P is precise then pP ´́�› Rq ›Q is the strongest postcondition.

As it happens, whenever P is precise, RAMIFY and FWRAMIFY

are each derivable from the other. However, precision is actually
only needed when starting from FWRAMIFY, and so we consider
RAMIFY to be fundamental. Moreover, although we were able to
prove some of the examples using FWRAMIFY, we found its ´́�›
idiom to be harder to reason about than the ´́› idiom in RAMIFY.

8.3 Extensions supporting ramification
We can ramify in any separation logic, but verifying certain pro-
grams can require various extensions, such as regions in §A. Here
we detail other extensions, starting with a more careful look at Y›.

The overlapping conjunction Y› Although the overlapping con-
junction Y› appears occasionally in the literature (under such names
as “fusion”, “relevance conjunction”, and “sepish”), its properties
are not well-understood for abstract separation logics.

A separation algebra [COY07] is a partial commutative monoid
with cancellation pS,‘q that provides an abstract model for separa-
tion logic. Although the overlapping conjunction Y› can be defined
in any separation algebra, it is not necessarily easy to use: in fact,
several critical properties require stronger separation algebra axioms.
We propose using a variant described by Dockins et al. [DHA09]
that has multiple units, disjointness (i.e., x‘ x“y ñ x“y), and a
kind of distributivity property called “cross split”:

a‘ b “ z ^ c‘ d “ z ñ Dac, ad, bc, bd.
ac‘ ad “ a^ bc‘ bd “ b^ ac‘ bc “ c^ ad‘ bd “ d

a b ac
ad bd

bcc
d

That is, if an element (e.g., a heaplet) can be split in two different
ways, then there are four subobjects which partition the original and
respect the original splittings. Cross split is not discussed much in
the literature, but we discovered that it is vital for reasoning about
the overlapping conjunctionY›, which is not even associative without
it. In fact, virtually all of our proofs that use Y› assume cross split.

Many—but by no means all—separation algebras used in prac-
tice satisfy cross split, including the canonical model of heaplets
as partial maps from addresses to values (quarters are found by set
intersection on the domain). Users of our theory must therefore
verify that the separation algebras they care about satisfy cross split.

Explicit overlapping conjunction Cherini and Blanco proposed
a generalization of PY›Q that tagged the shared core with an explicit
description C [CB09], defined as follows:

h (P xY› : CyQ def“ Dh1, h2, h3. ph1 ‘ h2 ‘ h3 “ sq ^
ph1 ‘ h2 (P q ^ ph2 (Cq ^ ph2 ‘ h3 (Qq

This explicit overlapping conjunction is more expressive than Y›:

P xY› : trueyQ %$ P Y› Q
Moreover, Cherini and Blanco developed the following proof rule:

EXPRAMIFY

tP u c tQu pC ´́�› Rq › C 1 $ R1 Q $ C 1 › true
tP xY› : CyRu c tQxY› : C 1yR1u

Unfortunately, EXPRAMIFY is not useful to verify any of our
examples because we focus on unspecified sharing—that is, we
do not know exactly what the overlap is (e.g., the precise nodes
shared between the children of a dag node), and hence cannot pick
C or C 1 other than true. In general unspecified sharing is more
difficult to verify than specified sharing, which is apparent when
one tries to apply EXPRAMIFY:

ptrue ´́�› Rq › true $ R1

In other words, start from R, remove an unrestricted subheap,
replace it with a second unrestricted heap, and now prove R1. Yikes!

www.manaraa.com

Conversely, EXPRAMIFY cannot verify our overlaid example
(§6) because instead of C and C 1 being too weak, they represent
the entire structure (i.e., P “C“R and Q“C 1“R1). Applying
EXPRAMIFY then makes no progress because the “simpler” Hoare
subproof tP u c tQu is actually identical to the goal.

All of that said, Cherini and Blanco demonstrate how to use
EXPRAMIFY to verify programs that operate in the special case of
specified partial sharing—i.e., when nontrivial C and C 1 are known
and not the entire P , Q, R, or R1. Happily, EXPRAMIFY is derivable
from RAMIFY, so we can reuse all of their verifications.

Fractional shares, actions, and tight regions In §4.2 we pointed
out that naïve attempts to verify mark using the shape-only dagpxq
predicate were unsound. In this paper we focused on functional
correctness instead, but we also experimented various other methods
for guaranteeing that the graph is not overly mangled, including
fractional shares [DHA09], actions in the style of RGSep [Vaf07],
and a variant of regions that could prevent memory deallocation.
Each method had some benefits but also required some additional
formalism; the tradeoffs were unclear.

Higher-order settings In recent years there have been several
flavors of separation logic to reason about higher-order state such
as the resource invariants of concurrent separation logic with first-
class locks [HAZ08]. Although we did not do any ramifications for
genuine higher-order settings (which are often very complicated in
ways unrelated to their higher-orderness), we did check a few of
the ramifications from this paper in Coq within the framework of
approximating separation algebras [HDA10], and believe that the
higher-orderness by itself poses no fundamental difficulties.

9. Related Work
There is a large body of work, orthogonal to ours, tackling the
design and proof of algorithms for data structures with sharing. Its
counterpart in program verification spans a range of domains, and
we begin this section with other separation logic based analyses.

Our reasoning about graphs owes a lot to the overlapping
conjunction Y›, which has roots in relevant logic [Urq72]. Many
people have rediscovered it in the context of separation logic [Rey03,
GMS12], who defined inductive graphs and dags as we did, but did
not provide a means to reason about them. Cherini and Blanco
were able to reason about a specified version of Y› using a more
domain-specific framework than ours, as discussed in §8.3.

More recently, Mehnert et al. and Krishnaswami et al. have used
some form of ramification to verify respectively implementations of
snapshottable trees [MSBS12] and programs that follow the subject-
observer pattern [KBA10], both of which involved unspecified
sharing. Their ramifications are restricted to ad-hoc “ramification
operators” tailored for each example, and the logic itself is domain-
specific and done modulo a predicate on the global heap. It would
be interesting to try and recast their proofs in our setting. Lee et al.
devised an automatic analysis for threaded trees that instruments the
results of separate analyses for lists and for trees [LYP11].

Moreover, several works have dealt with definite sharing in sep-
aration logic, e.g. doubly linked lists [Rey00], trees with parent
pointers, skip or cyclic lists, etc. In these cases, one always knows
what is shared and by whom. On the other hand, handling indefi-
nite sharing, such as in this paper, was achieved only by resorting
to tricks that specified or avoided the sharing. Yang’s proof of the
Schorr-Waite graph marking algorithm [Yan01, §7] (later mech-
anized in Isabelle/HOL [MN05]) does not define a spatial graph
predicate, but rather describes the graph by its spanning tree. At-
tempts to lift this kind of reasoning to other algorithms on dags
and graphs has led to convoluted predicates that explicitly deal with
sharing and hack data structures into ›-conjoined pieces, often in
ways tied to the behavior of the program at hand [BCO04].

Several other frameworks have dealt with sharing in pro-
grams. In shape analysis, Hob can prove data structure consistency
when one can expose a backbone into which objects ultimately
point [WKL`06], and TVLA has been used to prove partial correct-
ness of a mark-and-sweep garbage collector and the Schorr-Waite
algorithm [MSRF04]. Hawblitzel and Petrank have used Boogie
to automatically verify garbage collectors [HP09]. However, these
works do not provide compositional reasoning for sharing.

It would be interesting to see if we can import ramification into
other frameworks, such as Dafny [Lei10], whose reasoning about
the heap is based on dynamic frames (a cousin of separation logic).

10. Conclusion
We have presented a new paradigm, ramification, valid in any sep-
aration logic, for the compositional verification of programs that
manipulate data structures with both specified and unspecified shar-
ing. We gave a ramification library that helps simplify ramification
entailments in general and reduces local spatial updates to abstract
mathematical reasoning. We have demonstrated the applicability
of our framework by providing concise, local specifications for a
range of examples and data structures, including Cheney’s garbage
collector. These initial successes lead us to believe that ramification
provides a robust basis for elegant, compositional reasoning about
sharing in data structures.

Acknowledgments
We deeply thank Peter O’Hearn for his continuous help and encour-
agement. We also benefited from discussions with Josh Berdine,
Richard Bornat, Gareth Smitch, David Walker, Hongseok Yang, and
especially with Matthew Parkinson, who first suggested that our ini-
tial semantic account of ramification was expressible as a separation
logic entailment. Finally, we thank the anonymous reviewers for
their suggestions and enthusiasm.

This research was supported by a Lee Kuan Yew Postdoctoral
Fellowship and EPSRC Programme Grant “Resource Reasoning”.

References
[BCO04] R. Bornat, C. Calcagno, and P. O’Hearn. Local reasoning,

separation and aliasing. In SPACE, 2004.

[BCY06] R. Bornat, C. Calcagno, and H. Yang. Variables as resource in
separation logic. ENTCS, 155, 2006.

[Bor00] R. Bornat. Proving pointer programs in Hoare logic. In MPC,
2000.

[CB09] R. Cherini and J. O. Blanco. Local reasoning for abstraction
and sharing. In SAC, 2009.

[Che70] C. J. Cheney. A nonrecursive list compacting algorithm. C.
ACM, 13(11), 1970.

[COY07] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and
abstract separation logic. In LICS, 2007.

[DHA09] R. Dockins, A. Hobor, and A. W. Appel. A fresh look at
separation algebras and share accounting. In APLAS, 2009.

[Fin87] J. Finger. Exploiting constraints in design synthesis. PhD thesis,
Stanford University, 1987.

[Gas11] H. Gast. Developer-oriented correctness proofs - a case study
of Cheney’s algorithm. In ICFEM, 2011.

[GMS12] P. Gardner, S. Maffeis, and G. D. Smith. Towards a program
logic for JavaScript. In POPL, 2012.

[HAZ08] A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semantics
for concurrent separation logic. In ESOP, 2008.

[HDA10] A. Hobor, R. Dockins, and A. W. Appel. A logical mix of
approximation and separation. In APLAS, ENTCS, 2010.

[HP09] C. Hawblitzel and E. Petrank. Automated verification of
practical garbage collectors. In POPL, 2009.

[IO01] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language
for mutable data structures. In POPL, 2001.

[KBA10] N. Krishnaswami, L. Birkedal, and J. Aldrich. Verifying event-
driven programs using ramified frame properties. In TLDI,
2010.

www.manaraa.com

[Lei10] K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In LPAR, 2010.

[LG88] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems.
In POPL, 1988.

[LYP11] O. Lee, H. Yang, and R. Petersen. Program analysis for overlaid
data structures. In CAV, 2011.

[MAY06] N. Marti, R. Affeldt, and A. Yonezawa. Formal verification of
the heap manager of an operating system using separation logic.
In ICFEM, 2006.

[MN05] F. Mehta and T. Nipkow. Proving pointer programs in higher-
order logic. Inf. Comput., 199(1-2), 2005.

[MSBS12] H. Mehnert, F. Sieczkowski, L. Birkedal, and P. Sestoft. Formal-
ized verification of snapshotable trees: Separation and sharing.
In VSTTE, 2012.

[MSRF04] R. Manevich, S. Sagiv, G. Ramalingam, and J. Field. Partially
disjunctive heap abstraction. In SAS, 2004.

[Rey00] J. C. Reynolds. Intuitionistic reasoning about shared mutable
data structure. In Millennial Perspectives in Computer Science,
Cornerstones of Computing, 2000.

[Rey02] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In LICS, 2002.

[Rey03] J. C. Reynolds. A short course on separation logic.
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/
fox-19/member/jcr/wwwaac2003/notes7.ps, 2003.

[Thi01] M. Thielscher. The qualification problem: A solution to the
problem of anomalous models. Artificial Intelligence, 131(1),
2001.

[TSBR08] N. Torp-Smith, L. Birkedal, and J. C. Reynolds. Local reasoning
about a copying garbage collector. ACM TOPLAS, 30(4), 2008.

[Urq72] A. Urquhart. Semantics for relevant logics. J. Symb. Log., 37(1),
1972.

[Vaf07] V. Vafeiadis. Modular fine-grained concurrency verification.
PhD thesis, University of Cambridge, 2007.

[VP07] V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee
and separation logic. In CONCUR, 2007.

[WKL`06] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. C. Rinard.
Field constraint analysis. In VMCAI, 2006.

[Yan01] H. Yang. Local Reasoning for Stateful Programs. PhD thesis,
University of Illinois, 2001.

A. Copying Dags
The program in Fig. 8 makes a deep (structure-preserving) copy of a
dag, using a data field in each original node to record the location of
its copy when it exists (or 0 otherwise). Initially, all the copy fields
of dagpxq must be set to 0, and at the end all the nodes reachable
from x will have been copied into a new dag whose root is returned
by copy_dag. In the intermediate recursive calls, parts of the dag
rooted at the argument will have already been copied.

To cut down on the amount of formalism we must present to
verify a reasonable-looking specification for copy_dag, we will
utilize regions in the following ad-hoc way. We assume two regions,
α and β, bound at the “top level”, in the meta context. The initial
dag must come in region α, and malloc always allocates in region
β; afterwards the new copy will be in β and the original will remain
in α. This specification is not as general as one would want, since
e.g. it prevents us from verifying the copying of a copy; a far better
specification would take the regions as parameters, but all of the
extra wizardry would be in the (orthogonal) region management
system rather than in the ramifications. Ideally, such a system would
have features such as general-purpose region creation, destruction,
and merging, as well as a good handle on region variable scoping.

Describing completed and in-process dag copies We represent
an entirely copied dag δ “ pV,D,L,Eq rooted at x and its copy
rooted at y by the predicate ddagpx, y, δq (or double dag):

ddagpx, y, δq def“ px “ y “ 0^ empq _ pdagαpx, δq ›
dagβpy, copypδqq ^ Lpxq “ y ^ y ‰ 0q

The nodes in the first dag are described by the graph δ. Because we
store the addresses of the copy in the data fields, δ is also enough to

1 struct node {struct node *c,*l,*r;};
2 struct node *
3 copy_dag(struct node *x) { // ticdagpx, δqu
4 struct node *l,*r,*ll ,*rr ,*y;
5 if (!x) return 0;
6 if (x->c) return x->c;
7 l = x->l; r = x->r;
8 y = malloc(sizeof(struct node));
9 x->c = y;

10 //
"

x ÞÑα y, l, r › picdagpl, δq Y› icdagpr, δqq › y ÞÑβ ´,´,´^
δpxq “ p0, l, rq

*
11 ll = copy_dag(l);

12 //�p35q

"
x ÞÑα y, l, r › pddagpl, ll, δ1q Y› icdagpr, δ1qq ›
y ÞÑβ ´,´,´ ^ δpxq “ p0, l, rq ^ δ1 ěl δ

*
13 rr = copy_dag(r);

14 //�p36q

"
x ÞÑα 0, l, r › pddagpl, ll, δ2q Y› ddagpr, rr, δ2qq ›
y ÞÑβ ´,´,´ ^ δpxq “ p0, l, rq ^ δ1 ěl δ ^ δ2 ěr δ1

*
15 y->c = 0; y->l = ll; y->r = rr;

16 //

$&
%

x ÞÑα y, l, r › y ÞÑβ 0, ll, rr ›
pddagpl, ll, δ2q Y› ddagpr, rr, δ2qq ^
δpxq “ p0, l, rq ^ δ1 ěl δ ^ δ2 ěr δ1

,.
-

17 return y;
18 } // tddagpx, y, δ3q ^ δ3 ěx δu

Figure 8: Proof sketch of dag copy.

describe the copy via copypδq “ pV 1, D, L1, E1q, where

V 1 “ tv1 | Dv P V. Lpvq “ v1 ^ v1 ‰ 0u
L1pvq “ 0

E1pvq “ pl1, r1q if

$&
%
Dv1 P V. δpv1q “ pv, l, rq ^
pl “ l1 “ 0_ Lplq “ l1q ^
pr “ r1 “ 0_ Lprq “ r1q

The predicate ddag describes the postcondition for copy_dag;
our next task is to define the precondition. Because some parts of
the dag may have already been copied, the in-copy dag predicate
icdagpx, δq describes a single dag in region α and a set of dags in
region β corresponding to any previously copied sub-dags.

icdagpx, δq def“ dagαpx, δq › dagsβpprpx, δq, copypδqq
prpx, δq (processed roots) finds the roots of the copied sub-dags:

prpx, δq def“
$’&
’%
H if x “ 0

prpl, δq Y prpr, δq if δpxq “ p0, l, rq
txu otherwise

(32)

Observe that when x is copied, i.e. δpxq “ py, l, rq and y ‰ 0, then

icdagspx, δq %$ ddagspx, y, δq (33)

We will use this equivalence to move between the precondition and
the postcondition when we discover that the dag is already copied.

When we wish to reason entirely about the copies we write
cdagspx, δq (i.e., copy dags) for dagspprpx, δq, copypδqq. Note that
if x is not yet copied, i.e. δpxq “ p0, l, rq, then, using the second
case in the definition of pr , we deduce that

cdagspx, δq %$ cdagspl, δq Y› cdagspr, δq, and thus

icdagspx, δq %$ x ÞÑα 0, l, r › picdagspl, δqY› icdagspr, δqq (34)

Finally, to reflect the fact that already copied parts of the dag
will not be changed by copy_dag, we define the relation δ1 ěx δ
between two dags δ “ pV,D,L,Eq and δ1 “ pV,D,L1, Eq, true
when δ1 Ò x “ δ Ò x and δ1 Ó x is “more copied” than δ Ó x:

@v P reachpδ, xq. pLpvq ‰ 0ñ L1pvq “ Lpvqq ^
pL1pvq “ 0ñ Lpvq “ 0q

We will write δ1 ě δ when Dx. δ1 ěx δ.

www.manaraa.com

Verification of copy_dag Now we annotate the program in Fig. 8
with the key assertions to prove the following specification:

ticdagpx, δqu y = copy_dag(x) tddagpx, y, δ1q ^ δ1 ěx δu
If the dag is empty then the postcondition is trivially satisfied (line
5); if the node has already been copied (line 6) then equation 33
yields the postcondition. The real meat of the algorithm is in the
ramifications from the two recursive call sites and the entailment of
the postcondition from line 16. The two ramifications are as follows:

icdagpl, δq Y› icdagpr, δq
$ icdagpl, δq › pddagpl, ll, δ1q ^ δ1 ěl δ ´́›

ddagpl, ll, δ1q Y› icdagpr, δ1q ^ δ1 ěl δq
(35)

ddagpl, δ1q Y› icdagpr, δ1q
$ icdagpr, δ1q › pddagpr, rr, δ2q ^ δ2 ěr δ1 ´́›

ddagpl, ll, δ2q Y› ddagpr, rr, δ2q ^ δ2 ěr δ1q
(36)

As with mark, the second ramification follows from the first by
swapping the roles of r and l and observing that when δ1 ě δ
ddagpx, y, δq $ icdagpx, δ1q ô ddagpx, y, δ1q ô ddagpx, y, δq

Regions let us split the first ramification (35) using the Lem. 4.5
from our ramification library, yielding two simpler ramifications in
which δ1 ěl δ, and, by the definition of ddag, l“ll“0_ δ1plq“
pll,´,´q. The first half of (35), in region α,

dagpl, δq Y› dagpr, δq $ dagpl, δq › pdagpl, δ1q ´́›
dagpl, δ1q Y› dagpr, δ1qq,

(37)

is direct from Lem. 4.14. The second half of (35), in region β, is

cdagspl, δqY›cdagspr, δq $ cdagspl, δq › pdagpll, δ1
cq ´́›

dagpll, δ1
cq Y› cdagspr, δ1qq

(38)

where δ1
c “ copypδ1q. This ramification is more involved because

the copied roots of δ1 starting from r may differ from the previous
ones in δ. Instantiating Lem. 4.14 with S1 “ prpδ, lq, S2 “
prpδ, rq and S1

1 “ tllu yields this entailment, which is only
halfway there, because it features the sub-dags rooted at prpδ, rq,
whereas we want those rooted at prpδ1, rq:

cdagspl, δq Y› cdagspr, δq $ cdagspl, δq ›
pdagpll, δ1

cq ´́› dagpll, δ1
cq Y› dagspprpδ, rq, δ1

cqq
To complete this proof, we remark that the copied roots of r in δ1
and in δ satisfy the following relations, hence Lem. 4.10 applies:

prpδ, rq Ď reachpδ1
c, prpδ1, rqq pδ1 ě δq

prpδ1, rq Ď prpδ, rq Y reachpδ1
c, llq pδ1 ěl δq

To reach the postcondition from line 16, the sub-copies on each
side of the overlapping conjunction need to be disentangled from
the original sub-dags using regions and equation 25 in the following
derivations, where δpxq“p0, l, rq, δ1 ěl δ, and δ2 ěr δ1:

x ÞÑα y, l, r › y ÞÑβ 0, ll, rr ›
pdagαpl, δ2q › dagβpll, copypδ2qqq Y›
pdagαpr, δ2q › dagβprr, copypδ2qqq

$ dagαpx, δ3q › dagβpy, copypδ3qq ^ δ3 “ rx ÞÑ py, l, rqsδ2

$ ddagpx, y, δ3q ^ δ3 ěx δ

(39)

The last deduction step uses this mathematical fact:

δpxq “ p0, l, rq^δ1pxq “ py, l, rq^δ1 ěl δ^δ1 ěr δ ñ δ1 ěx δ

B. Disposing a Graph
Let us show how to verify the depth-first search spanning tree
procedure for binary graphs, as presented in Fig. 9.

The desired top-level specification for spanning is that, starting
from an unmarked graph γ, we remove some edges (indicated by
the predicate Ď) and get a tree τ that covers the same set of nodes:

tgraphpx, γq ^ unmarkedpγqu
spanning(x)
ttreepx, τq ^ τ Ď γ ^ reachpτ, xq “ reachpγ, xqu

The predicate pV,D,L,Eq Ď pV 1, D1, L1, E1q is true when
pV 1, D1, L1q “ pV,D,Lq, and E has “fewer edges” than E1:
@v P V.E1pvq “ pl1, r1q ñ Epvq “ pl, rq^l P tl1, 0u^r P tr1, 0u

1 void spanning(struct node *x) {
2 // tgraphpx, γq ^ γpxq “ p0,´,´qu
3 struct node *l,*r;
4 l = x->l; r = x->r;
5 // tx ÞÑ 0, l, r Y› graphpl, γq Y› graphpr, γq ^ γpxq “ p0, l, rqu
6 x->m = 1;

7 //�
"

x ÞÑ 1, l, r Y› graphpl, γ1q Y› graphpr, γ1q ^
γpxq “ p0, l, rq ^ γ1 “ m1pγ, xq

*
8 if (l && !l->m)

9 //
"

x ÞÑ 1, l, r Y› graphpl, γ1q Y› graphpr, γ1q ^
γpxq “ p0, l, rq ^ γ1 “ m1pγ, xq ^ γ1plq “ p0,´,´q

*
10 spanning(l);
11 else x->l = 0;

12 //�

$’&
’%

`
x ÞÑ 1, l, r Y› treepl, γ2q Y› graphspprpl, γ1q, γ2q Y›
graphpr, γ2q ^ γpxq “ p0, l, rq ^ γ1 “ m1pγ, xq ^
γ1plq “ p0,´,´q ^
γ2 Ď mpγ1, lq ^ reachpγ2, lq “ reach0pγ1, lq˘ _ ¨ ¨ ¨

,/.
/-

13 if (r && !r->m) spanning(r);
14 else x->r = 0;

15 //�

$’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’%

¨
˚̊̊
˝
x ÞÑ 1, l, r Y› treepl, γ3q Y› graphspprpl, γ1q, γ3q Y›
treepr, γ3q Y› graphspprpr, γ2q, γ3q ^ γpxq “ p0, l, rq^
γ1 “ m1pγ, xq ^ γ1plq “ p0,´,´q ^ γ2prq “ p0,´,´q ^
γ2 Ď mpγ1, lq ^ reachpγ2, lq “ reach0pγ1, lq ^
γ3 Ď mpγ2, rq ^ reachpγ3, rq “ reach0pγ2, rq

˛
‹‹‹‚

_

¨
˚̊̊
˝
x ÞÑ 1, l, 0 Y› treepl, γ1

3q Y› graphspprpl, γ1q, γ1
3q Y›

graphpr, γ1
3q ^ γpxq “ p0, l, rq ^ γ1 “ m1pγ, xq ^

γ1plq “ p0,´,´q ^ pγ2prq “ p1,´,´q _ r “ 0q ^
γ2 Ď mpγ1, lq ^ reachpγ2, lq “ reach0pγ1, lq ^
γ1
3 “ rx ÞÑ p1, l, 0qsγ2

˛
‹‹‹‚

_ ¨ ¨ ¨

,//////////////.
//////////////-

16 } //
"

treepx, γ1q Y› graphspprpx, γq, γ1q ^
γ1

Ď mpγ, xq ^ reach0pγ, xq “ reachpγ1, xq
*

Figure 9: Spanning tree of a binary graph.

During the execution, the graph will be partially marked, and
the effect of spanning on such graphs is thus subtler. Assuming that
the root x of the graph γ has not been marked yet, it transforms the
unmarked part of γ that is reachable from x (it was not apparent in
the top-level specification, wherein reach0pγ, xq “ reachpγ, xq)
into a tree covering the same nodes, overlapped with some subgraphs.
As seen in Fig. 9, these extra subgraphs are precisely those that start
at a marked node reachable from x via unmarked nodes in the
original graph, using the pr predicate (32) from Apx. A.

The proof of spanning has four main branches, corresponding to
whether each of the left and right sub-graphs has to be examined or
not (notice that spanning assumes a non-empty graph as a precondi-
tion). In Fig. 9, we only show the proof sketch corresponding to the
case where the left sub-graph was non-empty and unmarked. Mark-
ing the root x is done as in mark for graphs. To handle the recursive
call of line 10, we have to prove the following ramification:

graphpl, γ1q Y› graphpx, γ1q $ graphpl, γ1q ›
ptreepl, γ2q Y› graphspprpl, γ1q, γ2q ´́›

treepl, γ2q Y› graphspprpl, γ1q, γ2q Y› graphpx, γ2qq
Rewriting treepl, γ2q as graphpl, γ2q ^ pγ2 Ó l is a treeq, using an
analogue of Lem. 4.8 for trees turns this ramification into an applica-
tion of Lem. 4.14. The same trick can be used to obtain the first dis-
junct of line 15 (corresponding to the case where spanning(r) was
applied), while the second disjunct is an application of Lem. 4.12.

Because the nodes covered by the sub-trees at l and r are marked
and form the same set as the nodes reachable via unmarked paths in
the graphs before each recursive call, we can disentangle both trees
and the roots in the first disjunct of line 15 to form the spatial part

px ÞÑ 1, l, r › treepl, γ3q › treepr, γ3qq
Y› graphspprpl, γ1q, γ3q Y› graphspprpr, γ2q, γ3q

The post follows from the pure facts. The other disjuncts are similar.

